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The local concentrations of the two fluids within a mixing layer produced by an interfacial instability are
determined by their individual continuity equations. Solution of these equations requires constitutive relations
for the local mass fluxes of the two fluids. We derive explicit analytical expressions for these fluxes in planar
incompressible mixing layers characterized by a single integral length scale h�t�, which is presumed to be
provided by a suitable mix or turbulence model. Elementary scaling arguments imply that in mixing layers of
this type, the mean volume fraction profile ��x , t� depends on x and t only through the similarity variable s
=x /h�t�. The continuity equations determine ��s� in terms of the mass fluxes. We invert this relationship to
obtain constitutive relations for the mass fluxes in terms of an arbitrary given ��s� obtained from experiment
or direct numerical simulation. These relations can then be employed in more complicated situations �e.g.,
problems lacking spatial symmetry� in which the volume fraction is not known a priori. The resulting mass
fluxes are not inherently diffusional in character, but can be transformed into an alternative equivalent diffu-
sional form that may be advantageous for computational purposes. These results are further generalized to the
case in which the light and heavy regions of the mixing layer exhibit different piecewise self-similar scaling
behavior characterized by two independent integral length scales h1�t� and h2�t� that depend differently on
time. The validity and practical utility of the formulation are confirmed by a test calculation.
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I. INTRODUCTION

There is a continuing lively interest in the mixing layers
produced by the nonlinear growth of perturbations at un-
stable interfaces that separate a lighter fluid A from a heavier
fluid B. The simplest quantitative characterization of such
mixing layers is in terms of some appropriate integral length
scale h�t� proportional to the width or thickness of the mix-
ing layer at time t. The three classical interfacial instabilities
are the well-known Rayleigh-Taylor �RT�, Richtmyer-
Meshkov �RM�, and Kelvin-Helmholtz �KH� instabilities, for
which h�t� obeys simple scaling laws �1–9�. In practical ap-
plications, however, these instabilities are rarely encountered
in their idealized pure forms. In particular, the interfacial
acceleration history is rarely constant �RT� or impulsive
�RM�, but usually exhibits a more complicated time depen-
dence. The simple scaling laws are then no longer directly
applicable, and it becomes necessary to construct dynamical
models for the resulting time evolution of h�t�. The simplest
such models take the form of ordinary differential equations
�ODE’s� for h�t�. Various authors have proposed various
ODE mix models of this type �5–7,9–14�, which tend to be
similar in structure and to produce similar �and often remark-
ably good� agreement with experimental measurements of
h�t�.

By their very nature, however, such ODE mix models
cannot, and do not pretend to, predict or even describe the
internal structure of the mixing layer. The most basic de-
scription of this structure is in terms of the ensemble aver-
aged concentrations or partial mass densities �A and �B of the
two fluids as functions of position and time. These mass

densities are determined by the continuity equations of the
two fluids, the solution of which in turn requires knowledge
of the corresponding fluid velocity fields uA and uB. The
simplest fluid dynamical descriptions of this type are those in
which a single momentum equation determines the mass-
weighted mean velocity u of the mixture as a whole, which
is related to uA and uB by

�u = �AuA + �BuB, �1�

where �=�A+�B is the total mass density of the mixture. In
order to determine uA and uB separately, Eq. �1� must be
supplemented by a second relation between these velocities,
which is ordinarily obtained �15,16� from a constitutive re-
lation for the corresponding mass fluxes relative to u. These
fluxes are defined by

JA = �A�uA − u� , �2�

JB = �B�uB − u� = − JA. �3�

More elaborate two-fluid models, in which the velocity of
each fluid is determined by its own momentum equation,
have also been proposed �e.g., Refs. �4,17��, but are of course
much more complicated and difficult to validate and imple-
ment, and especially to incorporate as retrofits into existing
hydrodynamics codes.

By analogy with conventional descriptions of molecular
and turbulent diffusion of materials, the required constitutive
relations for the mass fluxes have usually been taken to be
diffusional in character, so that JA and JB are proportional to
concentration gradients. However, this analogy seems spe-
cious in the present context, since mixing due to interfacial
instabilities is largely if not primarily inertial in character
�15�. This inertial behavior is indeed an essential aspect of
the dynamical ODE models for h�t�, and should be consis-*Email address: john@ramshaw.org
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tently retained in the constitutive relations for the mass
fluxes as well. Our purpose here is to construct alternative
constitutive relations which properly capture the dynamical/
inertial aspects of the mixing. To this end, we systematically
exploit the fact that the constitutive relations for the mass
fluxes determine, via the continuity equations, the concentra-
tion profiles through the mixing layer. We show that in suf-
ficiently simple situations, this causal relationship can be
analytically inverted to obtain the explicit form of the con-
stitutive relations as a functional of the concentration pro-
files. This allows the former to be inferred from the latter,
which are directly accessible via experiments or direct nu-
merical simulations.

The simplifications upon which the present development
is based are as follows:

�a� We restrict attention to planar interfaces between im-
miscible incompressible fluids with negligible surface ten-
sion. This restriction is common to much of the previous
theoretical and experimental work in this area. Note that it
implies the absence of molecular diffusion, so that mixing in
the present context is entirely due to the mutual interpenetra-
tion of the two fluids produced by the instability.

�b� We further restrict attention to situations in which the
mixing layer is characterized by a single integral length scale
h�t�, which is presumed to be provided by a suitable mix or
turbulence model and hence may be regarded as known for
present purposes. This length scale is usually identified with
the bubble penetration depth of the lighter fluid into the
heavier one, but it may equally well be taken to be any other
length scale of the same order of magnitude.

It should be noted that simplifications �a� and �b� are quite
different in character, since �a� can be imposed experimen-
tally, whereas the conditions, if any, under which �b� is valid
are not at present known. We shall not attempt to address this
issue, which is clearly related to the controversial and still
unresolved question of the degree to which the length scale
or wave number spectrum of the initial interfacial perturba-
tion is “forgotten” as the instability evolves �18–20�. Reso-
lution of this question will require further theoretical and
experimental investigation. In the interim, however, we note
that restriction �b� may be obeyed closely enough to provide
a useful approximation even when it is not rigorously valid.

The first restriction �a� implies that �A and �B are com-
pletely determined by the ensemble averaged volume frac-
tion � of the lighter fluid A, via the relations summarized in
Sec. II. Moreover, � depends, by symmetry, only on the time
t and the spatial coordinate x in the direction normal to the
mixing layer. �If the system is spatially ergodic, so to speak,
ensemble averages may be replaced by area averages over a
plane of constant x; in either case �=��x , t�.� The second
restriction �b� further implies that ��x , t� depends on x and t
only through the similarity variable s=x /h�t�; i.e., the vol-
ume fraction profile is self-similar in the variable s. This
self-similarity and the resulting reduction in the number of
independent variables is the crucial simplification that allows
the relation between � and JA to be inverted and solved for
JA. The resulting constitutive relations for JA and JB=−JA
can then be employed, as an extrapolation, in more compli-
cated situations where the concentration profiles are not
known a priori, such as problems lacking planar symmetry

or involving compression. Such extrapolations of course rep-
resent approximations, which one would intuitively expect to
be accurate in some neighborhood of the conditions defined
by �a� and �b�. However, the size and boundaries of that
neighborhood can only be determined empirically by com-
parisons with further experiments and direct numerical simu-
lations.

The paper is organized as follows. Section II summarizes
the continuity equations and various basic relations between
the partial mass densities and the corresponding volume frac-
tions and mass fluxes of the two fluids, including an expres-
sion for the mass fluxes in terms of the relative velocity
�u�uA−uB. These relations are then specialized to the con-
ditions defined by restriction �a� above, in which we obtain
an evolution equation for ��x , t� in terms of �u�x , t�. This
equation is then transformed, by a change of variables, into a
characteristic relationship between �u and the velocity of a
surface of constant �; i.e., v����x /�t��. In Sec. III we in-
voke restriction �b�, which implies that � is self-similar as
discussed above. This in turn allows evaluation of v�, so that
the characteristic equation involving �u can immediately be
integrated to obtain an explicit expression for �u as a func-
tion of �� , t� and the self-similar volume fraction profile
��s�. This then determines the mass fluxes JA and JB=−JA,
which are simply proportional to �u. In Sec. IV we show
that the volumetric flow rates of the two fluids imply certain
constraints on the form of ��s�, which is an important tech-
nical detail. In Sec. V we show that even though �u is not
inherently diffusional in character, it can nevertheless be
transformed into an equivalent diffusional form which may
be advantageous for numerical implementation. Section VI
generalizes the main development of Secs. II–IV to situa-
tions in which the light and heavy regions of the mixing
layer are characterized by two independent integral length
scales h1�t� and h2�t� that depend differently on time. Section
VII contains a few concluding remarks. A test calculation
confirming the validity and practical utility of the formula-
tion is presented in an Appendix.

II. CONTINUITY EQUATIONS AND MASS FLUXES

The mass densities �A and �B are partial densities; i.e.,
masses of fluids A and B per unit total volume of the mix-
ture. Consequently, they each satisfy a continuity equation of
the usual form

��A

�t
+ � · ��AuA� = 0, �4�

��B

�t
+ � · ��BuB� = 0. �5�

It is noteworthy that in this form, these equations apply
equally well to both molecular and multiphase mixtures. It is
the latter interpretation which is appropriate here, since mo-
lecular diffusion is absent in the present context. It is also
noteworthy that in contrast to the other evolution equations,
the local instantaneous and ensemble averaged continuity
equations look formally identical because the averaged fluid
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velocities are mass weighted. Thus, for example, the mean
velocity of fluid A is not defined by �uA� �where �Q� denotes
the ensemble average of the local instantaneous quantity Q�,
but rather by ��AuA� / ��A�. �Indeed, interpreting uA in Eq. �4�
as �uA� would not even be sensible, since the local instanta-
neous value of uA is undefined at points outside fluid A.� In
the present context, all equations and the quantities appear-
ing therein are to be interpreted in an ensemble �or area�
averaged sense, and this will henceforth be understood.

In situations where the mass-weighted mean velocity u is
determined by a single momentum equation for the mixture
as a whole, it is appropriate and customary to rewrite Eqs.
�4� and �5� in the equivalent form

��A

�t
+ � · ��Au� = − � · JA, �6�

��B

�t
+ � · ��Bu� = − � · JB, �7�

where use has been made of Eqs. �2� and �3�. Equations �6�
and �7� show clearly that constitutive relations for JA and JB
are needed to close the system. These fluxes are simply pro-
portional to the relative velocity �u�uA−uB of the lighter
fluid relative to the heavier one, as can be seen by combining
Eqs. �1�–�3� to obtain

JA = − JB = ��A�B

�
	�u . �8�

Knowledge of �u is therefore sufficient to obtain the mass
fluxes, so we may henceforth restrict our attention to deter-
mining �u.

Since we are regarding the mixing layer as a two-phase
mixture of fluids A and B, the fluid volume fractions �A
�� and �B=1−�A=1−� are well defined, and are again to
be interpreted as ensemble averages. The mean mass densi-
ties of the pure fluids A and B �i.e., the mass of each fluid per
unit volume occupied by that fluid� are then given by

�A
0 =

�A

�
, �B

0 =
�B

1 − �
�9�

and, conversely,

�A = ��A
0 , �B = �1 − ���B

0 . �10�

Combining Eqs. �4�, �5�, and �10�, we obtain

���A�A
0�

�t
+ � · ��A�A

0uA� = 0, �11�

���B�B
0�

�t
+ � · ��B�B

0uB� = 0 �12�

which are simply the standard two-phase continuity equa-
tions in their conventional form �21,22�.

We now proceed to specialize the above general relations
to the conditions defined by simplification �a�. The restriction
to incompressible fluids implies that the pure fluid densities
�A

0 and �B
0 become known given constants which can be taken

outside of space and time derivatives. It then follows from
Eq. �10� that knowledge of � as a function of position and
time uniquely determines the partial densities �A and �B and
the total density �. The restriction to planar geometry further
reduces the problem to one space dimension, so that vectors
reduce to scalars and the divergence reduces to � /�x. Equa-
tions �11� and �12� then become

��A

�t
+

�

�x
��AuA� = 0, �13�

��B

�t
+

�

�x
��BuB� = 0. �14�

Adding Eqs. �13� and �14�, we obtain

�uv

�x
= 0, �15�

where uv��AuA+�BuB is the volume-weighted mean veloc-
ity of the mixture �23�, which differs from the ordinary mass-
weighted mean velocity u. Equation �15� shows that uv is
independent of x and is therefore a function of time alone;
i.e., uv=uv�t�.

Now uA=uv+ �uA−uv�, and uA−uv=uA−�AuA−�BuB

=�B�u, so Eq. �13� may be rewritten as

��

�t
+ uv

��

�x
= −

�

�x
���1 − ���u� �16�

which may be regarded as the fundamental time evolution
equation for ��x , t� in an incompressible planar mixing layer.
We shall suppose that the lighter fluid A initially occupies the
region −��x�0, while the heavier fluid B occupies the
region 0�x��, so that ��x , t� approaches unity as x→−�
and zero as x→�. This in turn implies that uv=uA�−� , t�
=uB�� , t�, so that uv�t� is also the common velocity of the
pure fluids far from the mixing layer. Since the fluids are
incompressible, this is also the velocity with which the mix-
ing layer itself translates in the x direction. It is convenient to
choose a reference frame or coordinate system in which the
fluids are stationary at infinity, so that uv=0 and the mixing
layer grows in width but does not translate while doing so.
Equation �16� then becomes

��

�t
= −

�

�x
���1 − ���u� . �17�

Now one would intuitively expect that in fully developed
mixing layers, ��x , t� will be a monotonically decreasing
function of x at constant t, and this behavior has indeed been
observed in a wide variety of experimental and computa-
tional studies �2,4,14,18,19,24–26�. Slight deviations from
monotonicity have occasionally been reported in numerical
simulations �e.g., Refs. �2,24��, but seem likely to have been
artifacts of inadequate statistics, residual memory of initial
conditions at early times, and/or discretization errors. In any
case, it is clear that volume fraction profiles in planar mixing
layers are normally monotonic, and this behavior will be
assumed in what follows.

SIMILARITY-BASED CONSTITUTIVE RELATIONS FOR¼ PHYSICAL REVIEW E 73, 026309 �2006�

026309-3



The relative velocity �u is fundamentally a function of
�x , t�, but the assumed monotonicity of ��x , t� implies that x
is conversely a single-valued monotonically decreasing func-
tion of � at constant t, so that we may equally well regard �u
as a function of �� , t� instead. Thus we write �u=�u�� , t�,
and this functional dependence will henceforth be under-
stood. Using the chain rule to convert from � /�x to � /��, we
may then rewrite Eq. �17� in the form

�

��
���1 − ���u� = −

��/�t

��/�x
= � �x

�t
	

�

� v�, �18�

where use has been made of a well-known identity involving
partial derivatives. Equation �18� is essentially a special case
of a basic relation in the characteristic analysis of a first-
order nonlinear hyperbolic wave equation of conservation
form �27�.

III. SCALING AND SELF-SIMILARITY

We now proceed to explore the consequences of simplifi-
cation �b�, which implies that the only length scales con-
tained in ��x , t�, or upon which ��x , t� can in any way de-
pend, are proportional to h�t�. This in turn implies that any
velocity that can be extracted from ��x , t� must be propor-

tional to ḣ�dh /dt. This applies, in particular, to v�, so that

v� = � �x

�t
	

�

= F���ḣ�t� , �19�

where F��� is an as yet undetermined function of � alone.
Integrating from t=0 to t at constant �, we obtain

x��,t� = x��,0� + F����h�t� − h�0�� . �20�

But at t=0, the mixing layer is a discontinuity with zero
thickness, so that h�0�=0 and x�� ,0�=0 for any value of �
between zero and unity. Equation �20� then simply reduces to
x=F���h�t�, or F���=x /h�t��s, which implies that � is a
function of s alone. Thus � depends on �x , t� only through s,
and consequently exhibits self-similar scaling behavior in the
similarity variable s. We may therefore write �=��s�, and
conversely s=s���, where the function s��� is the inverse of
the function ��s�, and is now seen to be identical to the
previously undetermined function F���. When ��s� is known
in tabular form, s��� is easily obtained simply by interchang-
ing the two columns in the table.

Since F���=s���, Eq. �19� now becomes v�= ḣ�t�s���,
which combines with Eq. �18� to yield

�

��
���1 − ���u� = ḣs��� . �21�

Equation �21� can immediately be integrated, with the result

�u��,t� =
ḣ�t�

��1 − ��
0

�

s����d�� �22�

which explicitly determines the form of the relative velocity
required to produce or reproduce a given self-similar volume

fraction profile ��s�. Equation �22� is our main result, which
immediately determines the desired constitutive relations for
the mass fluxes via Eq. �8�.

The integral in Eq. �22� obviously vanishes as �→0, and
we shall show in the next section that it also vanishes as �
→1. However, when the profile ��s� is not of finite extent
�i.e., when ��1−�� is nonzero for all finite values of s�,
application of L’Hôpital’s rule to Eq. �22� shows that
�u�� , t� will correspondingly diverge as �→0 or 1. This
behavior is of course unphysical, but is merely a harmless
artifact of the fact that profiles of this type, while mathemati-
cally convenient, imply an infinite signal speed and are
hence themselves unphysical. The divergence of �u as �
→0 or 1 in such cases simply reflects the fact that an arbi-
trarily large relative velocity is required to produce a finite
disturbance arbitrarily far from the initial interface at a finite
time.

IV. VOLUMETRIC CONSTRAINTS

We have loosely referred to the profile ��s� as “arbitrary,”
but strictly speaking this is not quite true: it must be properly
centered volumetrically, so that equal volumes of the two
fluids lie on each side of the point s=0. This constraint is a
consequence of the fact that we are in a coordinate system
where uv=0, which implies that there is no net flow of vol-
ume across any surface of constant x, in particular the sur-
face x=0 at which s=0 for all time. The volumetric flow
rates of fluids A and B across this surface must therefore
always be equal and opposite, and since this surface sepa-
rates the two fluids at t=0, it is clear that at any later time,
the total volume of fluid B in the region x�0 must be the
same as the total volume of fluid A in the region x�0, i.e.,



−�

0

�1 − ��x,t��dx = 

0

�

��x,t�dx . �23�

This relation is easily confirmed mathematically by integrat-
ing Eqs. �13� and �14� over the regions 0�x�� and −�
�x�0, respectively, subtracting the results, and integrating
with respect to time. Integrating by parts, we obtain the sim-
pler equivalent relation



−�

�

x
��

�x
dx = 0. �24�

Transforming the integration variables from x to s at constant
t, we obtain the equivalent constraints on the profile ��s�,



−�

0

�1 − ��s��ds = 

0

�

��s�ds �25�

and



−�

�

s
d�

ds
ds = 0. �26�

Transforming the integration variable in Eq. �26� from s to �
then yields the equivalent constraint on the inverse profile
s���,
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0

1

s���d� = 0. �27�

As a simple example, we consider the case in which the
profile ��s� is linear in s, which is the simplest qualitatively
reasonable possibility. This was the special case considered

in Ref. �15�, where �u was taken to be proportional to ḣ but
independent of � or x. Let us confirm that Eq. �22� in fact
yields a �u of that form for this case. We therefore suppose
that ��s� varies linearly from a value of unity at s=a�0 to a
value of zero at s=b�0. The inverse profile s��� then varies
linearly from b at �=0 to a at �=1, and therefore has the
form s���=b+ �a−b��. The volumetric constraint of Eq. �27�
then implies that a+b=0, so that a=−b. The inverse profile
s��� then becomes s���=b�1−2��, which combines with Eq.

�22� to yield �u�� , t�=bḣ�t�. A relative velocity proportional

to ḣ but independent of � or x therefore corresponds to a
linear volume fraction profile, and vice versa, just as was
found in Ref. �15�.

In most cases, one will wish to infer ��s� from some
given “raw” volume fraction profile �0�x� , t0� at a fixed time
t0, with a corresponding length scale h=h�t0��h0. The inde-
pendent variable in the raw profile has been denoted by x�
rather than x to allow for the possibility that �0 may have
been determined in a coordinate system with a different ori-
gin from that assumed in the present development. If so, the
two coordinate systems are simply related at time t0 by a
shift transformation of the form x�=x+x0, where x0 may eas-
ily be determined by requiring the raw profile as a function
of x, namely, �0�x+x0 , t0�, to satisfy the volumetric con-
straint conditions derived above, in particular Eq. �24�. Once
x0 has been determined in this way, ��s� may simply be
identified with �0�h0s+x0 , t0�. However, it is more conve-
nient to derive the equivalent relation for s���, since this is
the quantity appearing in the constitutive relations. To this
end, we define s��x� /h�t�=x� /h0 at t= t0, a function ��s��
��0�h0s� , t0�, and the corresponding inverse function s����.
Thus the functions ��s�� and s���� are simply the self-similar
profile and inverse profile that one would naively infer from
the raw profile by ignoring the volumetric constraints, and
they will not in general satisfy those constraints. Now at time
t0,

s���� =
x�

h0
=

x + x0

h0
= s��� + s0, �28�

where s0=x0 /h0. Equation �28� combines with Eq. �27� to
yield

s0 = 

0

1

s����d� , �29�

whereupon Eq. �28� becomes

s��� = s���� − 

0

1

s�����d��. �30�

Equation �30� determines the corrected and volumetrically
consistent inverse profile s��� in terms of the corresponding

volumetrically inconsistent inverse profile s����. The result-
ing s��� manifestly satisfies the volumetric constraint condi-
tion of Eq. �27�.

V. EQUIVALENT DIFFUSIONAL FORMULATION

As was anticipated in the Introduction, Eq. �22� for �u is,
or at least superficially appears to be, manifestly nondiffu-
sional in nature, since it is algebraic in form rather than
being proportional to concentration gradients. However, we
now proceed to show that Eq. �22� for �u can nevertheless
be transformed into an alternative equivalent expression
which is diffusional in form, in spite of the fact that the
underlying physical process determining h�t� is not inher-
ently or fundamentally diffusional in character. As would be
expected on dimensional grounds, the diffusion coefficient in

this expression is found to be of the form D=hḣC���, and
we shall derive an explicit analytical expression for the di-
mensionless function C��� as a functional of s���. The
simple case in which C is a constant independent of � will be
shown to correspond to a volume fraction profile ��s� of
error function form, and vice versa.

Now if the mass fluxes JA and JB were indeed diffusional
in character, they would have the Fick’s Law form �28�

JA = − JB = − �D � ��A

�
	 . �31�

When the two fluids A and B are incompressible, Eq. �31�
readily reduces to

JA = − JB = − ��A
0�B

0

�
	D � � , �32�

where use has been made of Eq. �10�. Comparison with Eq.
�8� shows that diffusional mass fluxes of this form corre-
spond to a relative velocity of the form

��1 − ���u = − D � � �33�

which in the present one-dimensional context reduces to

��1 − ���u = − D
��

�x
. �34�

Since ��x , t�=��s�, Eq. �34� further reduces to

��1 − ���u = −
D

h

d�

ds
. �35�

Comparison of Eq. �35� with the previous nondiffusional Eq.
�22� for �u then shows that the two can indeed be made
consistent simply by requiring that

−
D

h

d�

ds
= ḣ


0

�

s����d��. �36�

Solving for the diffusion coefficient D, we find

D = hḣC��� , �37�

where
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C��� = −
ds���

d�



0

�

s����d��. �38�

Equations �37� and �38� provide an explicit expression for
the diffusion coefficient D required to produce or reproduce
any given self-similar volume fraction profile ��s�. Thus,
contrary to superficial appearances, the diffusional form of
�u given in Eq. �34� is in fact consistent with and equivalent
to the algebraic expression for �u given in Eq. �22�, pro-
vided that the diffusion coefficient is chosen appropriately.

Of course, this result is potentially useful only in situa-
tions where the resulting D is positive, since otherwise the
diffusional formulation would be catastrophically unstable to
small perturbations and would represent an ill-posed initial
value problem. Now h�0 by definition, and it is straightfor-
ward to show that C�0 by virtue of Eq. �27� and the mono-
tonicity of ��s�. The sign of D is therefore the same as that

of ḣ, so that D will always be positive when ḣ�0; i.e., when
the mixing layer is growing or expanding with time. Con-
versely, however, if the mixing layer is shrinking or contract-

ing �i.e., the two fluids are separating or demixing� then ḣ
�0, which implies D�0. In this case Eqs. �31�, �37�, and
�38� should not be used, and the original Eqs. �8� and �22�
should be used instead.

It is of interest to determine the volume fraction profile
for which C is a constant independent of �. To this end, we
rewrite Eq. �38� for constant C in the form

C
d�

ds
= − 


0

�

s����d��. �39�

Differentiating Eq. �39� with respect to s, we obtain

C
d2�

ds2 = − s
d�

ds
�40�

which is easily integrated to yield

d�

ds
= A exp�−

s2

2C
	 , �41�

where A is the value of d� /ds at s=0. Integrating Eq. �41�
from s=−� �where �=1� to s, we obtain

��s� = 1 + A��C

2 �1 + erf� s
�2C

	 , �42�

where erf�z� is the standard error function. The value of A is
determined by the requirement that ��s�→0 as s→�. We
thereby obtain A=−1/�2�C, and Eq. �42� then becomes

��s� =
1

2�1 − erf� s
�2C

	 �43�

which not surprisingly has the well-known error function
form that typically occurs in self-similar diffusion problems
�28�. Thus a volume fraction profile of error function form
corresponds to a constant value of C and hence a diffusion
coefficient D independent of �, and vice versa.

We reemphasize that the above development does not in
any sense imply that the underlying physical process produc-

ing ��s� is inherently diffusional in character. We have sim-
ply shown that an arbitrary monotonic ��s�, whatever its
physical origin, can be reproduced �or mimicked, as it were�
by a JA or �u of diffusional form, provided the diffusion
coefficient D is appropriately chosen as a function of time
and the local value of �. This lack of an intrinsic physical
interpretation is further emphasized by the observation that
we could equally well construct, by an entirely similar argu-
ment, an infinity of other alternative equivalent expressions
for JA in terms of various arbitrary functions of the form
dnG��� /dxn having no physical significance. Which of these
various analytically equivalent alternatives one chooses to
work with is entirely a matter of mathematical convenience.
In this regard, the diffusional formulation presented above
seems likely to be especially convenient and well suited for
numerical or computational purposes, where it has the fol-
lowing apparent advantages: �a� it may tend to be more
stable and well behaved numerically, since diffusion is a
smoothing process, �b� it should be easier to retrofit into
existing hydrodynamics codes which already transport mate-
rials diffusionally, and �c� it is more straightforward to
implement multidimensionally, where �� /�x→��. This au-
tomatically produces a vectorial JA or �u pointing in the
direction normal to the mixing layer, thereby eliminating the
previous need to determine this direction separately �15�.
Moreover, the error function volume fraction profile implied
by the simple approximation of constant C is qualitatively
more realistic than the linear profile implied by the approxi-
mation that �u is independent of �. This in turn suggests that
D is in general likely to be a weaker function of � than �u is.

Zhou et al. �29� recently described a different procedure
for defining a variable diffusion coefficient proportional to

hḣ within the mixing layer. Their procedure contains an ad-
justable parameter which allows the user to vary the volume
fraction profile to some extent, but it was not designed to
accommodate or reproduce an arbitrary specified profile.

VI. PIECEWISE SIMILARITY

The preceding development presumes that the entire vol-
ume fraction profile exhibits self-similar scaling behavior
based on a single integral scale length h�t�. However, when
the density ratio �B

0 /�A
0 becomes sufficiently large and the

acceleration history varies sufficiently rapidly in time, there
is considerable evidence that the spike and bubble penetra-
tion depths no longer exhibit the same time dependence
�12–14�. The light and heavy sides of the mixing layer are
then characterized by independent integral length scales h1�t�
and h2�t�. It is convenient and customary to identify these
length scales with the corresponding penetration depths, and
this will henceforth be understood. Some mix models ac-
cordingly determine h1�t� and h2�t� by means of separate
evolution equations, which are generally similar in form but
with different coefficients �e.g., Refs. �13,14��. In this situa-
tion, global self-similarity of the type discussed above is
clearly no longer possible. However, the preceding develop-
ment can be generalized to accommodate this situation by
constructing piecewise self-similar volume fraction profiles
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based on the assumption that � exhibits different self-similar
scaling behavior in the light and heavy regions of the mixing
layer. As will be seen, however, these regions can no longer
simply be defined by x�0 and x�0, but must rather be
defined by x�X�t� �region 1� and x�X�t� �region 2�, where
X�t� is implicitly determined by the volumetric constraint
condition of Eq. �23�. This further implies that for present
purposes, h1�t� and h2�t� should not be defined in terms of
penetration depths relative to x=0, which is the standard
convention, but rather in terms of penetration depths relative
to x=X�t�. Fortunately, the conversion between these two
definitions is straightforward. We thereby obtain a general-
ized expression for �u suitable for use in conjunction with
mix models that determine h1�t� and h2�t� by means of sepa-
rate evolution equations.

We accordingly introduce a generalized similarity vari-
able s defined by s= �x−X�t�� /h1�t� for x�X�t� and s= �x
−X�t�� /h2�t� for x�X�t�, and we again assume that ��x , t�
depends on x and t only through s. Thus we still have �
=��s� and s=s��� as before, but the transformation between
the variables x and s becomes somewhat more complicated.
Performing this transformation in the volumetric constraint
condition of Eq. �23�, we obtain, after a little algebra,

X�t� = h1�t�I1 − h2�t�I2, �44�

where

I1 = 

−�

0

�1 − ��s��ds = − 

�0

1

s���d� , �45�

I2 = 

0

�

��s�ds = 

0

�0

s���d� , �46�

and �0���0� is the time-independent value of � at s=0; i.e.,
at x=X�t�. Equation �44� determines X�t� in terms of the
profile ��s�. Notice that if we had assumed X=0 at the out-
set, it would have been impossible to satisfy Eq. �44� unless
h1�t� /h2�t�=const; i.e., unless the two scale lengths had the
same time dependence. If the scale lengths hi�t� are defined
as penetration depths relative to x=X�t�, then the correspond-
ing penetration depths relative to x=0 are simply

h1
*�t� = h1�t� − X�t�, h2

*�t� = h2�t� + X�t� . �47�

It is the quantities hi
*�t� that should be identified with the

penetration depths in conventional ODE mix models. Con-
versely,

h1�t� = h1
*�t� + X�t�, h2�t� = h2

*�t� − X�t� �48�

which combines with Eq. �44� to yield

X�t� =
h1

*�t�I1 − h2
*�t�I2

1 − I1 − I2
. �49�

Equation �49� expresses X�t� in terms of the hi
*�t�, where-

upon Eq. �48� provides an explicit expression for the hi�t� in
terms of the hi

*�t�.
We are now in a position to carry through the develop-

ment of Sec. III in a piecewise fashion, allowing for the

different relations between x and s in the two regions. Equa-
tion �21� is now replaced by

�

��
���1 − ���u� = � �x

�t
	

s
= ḣis��� + Ẋ �50�

in which i=1 for ���0 and i=2 for ���0, or conversely
���0 for i=1 and ���0 for i=2. In either case, Eq. �50�
may be integrated from �0 to �, with the result

��1 − ���u = �0�1 − �0��u0 + ḣi

�0

�

s����d�� + Ẋ�� − �0� ,

�51�

where �u0=�u��0 , t�. Evaluating Eq. �51� at �=0, where i
=2, we obtain

�0�1 − �0��u0 = ḣ2I2 + Ẋ�0, �52�

where use has been made of Eq. �46�. Combining Eqs. �44�,
�51�, and �52�, we finally obtain

�u��,t� =
1

��1 − ���ḣi�t�

�0

�

s����d�� + �ḣ1�t�I1

+ �1 − ��ḣ2�t�I2 , �53�

where again i=1 for ���0 and i=2 for ���0. Equation
�53� provides an explicit expression for the �u�� , t� required
to produce or reproduce any specified piecewise self-similar
volume fraction profile ��s�.

Finally, we remark that the present case of piecewise
similarity can also be readily transformed into an alternative
equivalent diffusional formulation of the type developed in
the preceding section. This transformation is straightforward,
and will therefore be omitted in the interests of brevity.

VII. CONCLUDING REMARKS

We have shown how to construct explicit analytical con-
stitutive relations for the mass fluxes JA and JB in planar
incompressible mixing layers in such a way as to reproduce
any known or given monotonic self-similar volume fraction
profile ��s�. The latter profiles are directly accessible via
experiments or direct numerical simulations, whereas the
constitutive relations themselves are not. The present devel-
opment provides a means by which the latter may be inferred
from the former. Once the constitutive relations have been
determined in this way, they may be employed as an extrapo-
lation in other situations where the volume fraction profiles
are not known a priori, such as problems lacking spatial
symmetry or perhaps even problems involving compression.
Such extrapolations, of course, represent approximations
whose accuracy can only be determined by comparision with
experiments or direct numerical simulations. These constitu-
tive relations will no doubt be more accurate in some prob-
lems than others, but at least they are guaranteed by con-
struction to produce the correct volume fraction profiles in
the special case of planar incompressible mixing layers.
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The present results for JA and JB must be used in conjunc-
tion with a suitable mix model to determine the length scale
h�t�. The formalism itself is compatible with any such model,
but the accuracy of the results will of course be limited by
that of the model from which h�t� is obtained.

The form of these constitutive relations is well suited for
numerical implementation in hydrodynamics codes, thereby
allowing the simulation of problems involving material mix-
ing due to unresolved �subgrid scale� perturbations on un-
stable fluid interfaces �15�. However, the present develop-
ment has been based upon the essential assumption that h�t�
is a known function of time alone, whereas implementation
of mix and turbulence models in hydrodynamics codes will
ordinarily produce length scales that depend on position as
well as time �15,16�. This inconsistency is conceptually un-
satisfactory, but unfortunately it cannot be entirely elimi-
nated in descriptions of this type; it must simply be tolerated
as an approximation, which seems intuitively reasonable as
long as h varies only slightly over distances of order h itself.
Such inconsistencies are not peculiar to the present context,
but tend to arise whenever one attempts to interpret global or
integral quantities such as h as local variables. In particular,
similar inconsistencies are also implicit in much of conven-
tional two-phase flow and turbulence modeling �30�, where
they have yet to receive the attention they deserve.
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APPENDIX: TEST CALCULATION

A test calculation was performed to verify that a straight-
forward numerical implementation of the constitutive rela-
tions derived herein will indeed accurately reproduce a given
experimentally determined volume fraction profile. For this
purpose, we used the nondiffusional form of Eq. �22� to fur-
ther emphasize the fact that the mixing process is not inher-
ently diffusional in nature.

The particular experimental volume fraction profile cho-
sen for this calculation was that reported in Fig. 10�b� of Ref.
�14�. That figure displays the volume fraction 1−� of the
heavier fluid as a function of the scaled distance z /2AZ in a
Rayleigh-Taylor experiment with Atwood number A=0.32
and acceleration g�70g0, where g0=980 cm/s2, z is the nor-
mal distance coordinate denoted here by x, and Z�0.5gt2 is
the displacement of the interface at time t. This profile was
manually digitized at a set of 33 discrete data points equally
spaced in the independent variable z /2AZ. �The digitization
was conveniently performed by scaling the cursor pixel co-
ordinates displayed when viewing the figure with ghostview.�
The resulting table of 1−� vs. z /2AZ was then converted
into a corresponding table of � vs. s=x /h by identifying h
with the bubble penetration depth �2Agt2, so that �2s
=z /2AZ,

where �2=0.049 �14�. The discretization introduced slight
errors into the volumetric constraint conditions of Sec. IV, so
these errors were corrected by slightly shifting the s values in
the table as prescribed by Eq. �30�. The resulting experimen-
tally determined ��s� profile is shown by the “�” data points
in Fig. 1. �The small irregularities in the profile are present in
the original figure �14�.� The values of the integral I���
��0

�s����d�� at the same discrete values of s were then
computed and tabulated by numerical integration using the
trapezoidal rule.

We then proceeded to generate corresponding calculated
volume fraction profiles by numerically solving Eq. �17�,
with �u given by Eq. �22�, using the MacCormack two-step
predictor-corrector scheme �31,32�. This calculation of
course required the evaluation of I��� at values of � inter-
mediate between those in the table. These intermediate val-
ues of I were obtained by quadratic interpolation between the
tabulated values, in accordance with the piecewise linear ap-
proximation to s��� upon which the trapezoidal rule is
based. The calculational region was −L /2	x	L /2, where
L=1.5 cm, and was subdivided by 1001 equally spaced mesh
points xi=−L /2+ �i−1��x, where �x=L /1000. The calcula-
tion used a variable time step �t=0.1�x /vmax, where vmax

= ḣ�t��s�1�� is the largest value of �v�� in the computing
mesh.

In this problem it is unnecessary to use an auxiliary mix
or turbulence model to obtain h�t�, since h�t�=�2Agt2, so

that ḣ=2�2Agt=2h / t. Because of the spatial discretization,
the initial volume fraction profile has a finite width of order
�x, so the calculation was started at the time t= t0 at which
h=�x; i.e., t0=��x / ��2Ag�. The volume fraction profile at
this time was taken to be ��x , t0�= �1−tanh�x /�x�� /2. The
calculation was run out to a final time of t=20 ms. The re-

FIG. 1. Comparison of experimental volume fraction profile ��
points� and calculated profiles obtained by numerically solving Eq.
�17� with �u given by Eq. �22� �dashed lines�.
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sulting profiles of ��s� at t=10 ms and t=20 ms are shown
as the dashed curves in Fig. 1. Since h is quadratic in t, the
��x , t� profile is four times wider at the latter time than the
former one, but these profiles collapse onto a single curve

when plotted vs. the similarity variable s=x /h�t�. Moreover,
this curve is seen to accurately reproduce the original experi-
mental profile, including even the small irregularities in the
latter.
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